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In certain data treatment procedures, like the Guggenheim method for first-order kinetics data with a background
and various combination differences methods in spectroscopy, the analyzed data are obtained by taking
differences of the raw data to render the resulting analysis simpler. Such methods can yield correlated data,
the proper quantitative analysis of which requires correlated least squares. A formal treatment of these
procedures shows that the source of the correlation is not the subtraction itself but the multiple use of data
points from the raw data set in producing the differences. Typical applications of the Guggenheim method
entail fitting the logarithm of the absolute differences to a straight line. Monte Carlo studies of both a constant-
error and a proportional-error model for a declining exponential with a background show that neglect of
weights is likely to be a greater source of imprecision than neglect of correlation. The most common form of
the method of combination differences does not involve multiple use of the raw data and thus is a statistically
sound procedure with no correlation problem.

Introduction

In 1926, Guggenheim1 suggested a method for analyzing first-
order kinetics data when the desired exponential information is
superimposed upon a background: Record data for a number
of early timesti and then also for a set of later times displaced
by a constant intervalτ. Then, subtract corresponding values
(at ti and ti + τ) to eliminate the background and estimate the
rate constant from the slope of a logarithmic plot of the absolute
differences versusti. Although modern computational methods
have long since rendered such graphical methods obsolete, the
Guggenheim method still features in the undergraduate physical
chemistry curriculum2,3 and is even used surprisingly often in
research applications (e.g., eight research citations of ref 1 in
2002).

Another area in which subtraction is used to simplify data
analysis is the method of combination differences in spectros-
copy.4 This method is designed to isolate the dependences on
the parameters for one level from those for other levels. Again,
the transformed data yield a nearly linear plot suitable for
graphical analysis. While the combination differences approach
is still considered useful in confirming assignments, it is seldom
utilized in quantitative research work these days. Other subtrac-
tion techniques have been applied to spectroscopic data in the
teaching literature.5,6

There is a problem with such difference methods, however,
when they are implemented quantitatively through least-squares
(LS) fitting. They can lead to correlated data, which require
correlated LS for proper analysis. Neglect of the correlation can
have a big impact on the precision of the analysis. As one
dramatic illustration of this point, in a recent study7 of statistical
errors in isothermal titration calorimetry,8 I considered two
different models for the nature of the error in the titrant volume
as delivered by a motorized syringe. If the incremental volumes
are considered random, the parameter standard errors actually
increase with increasing number of titration steps. On the other

hand, if the incremental volumes are considered to be the
differencesbetween two random quantities (the total delivered
volume afteri - 1 andi steps), they possess correlated error.
As a result of this correlation, the parameter errors become
smaller anddecreasewith increasing number of titration steps.
Both dependences were accounted for formally and confirmed
through Monte Carlo calculations.

Although procedures for correlated LS fitting have long been
known,9-14 many workers remain unaware of both the proce-
dures and the conditions that make them necessary. What
attention has been focused on this problem has normally been
in the context of multistep LS analysiss where data are first
fitted to some intermediate parameters that are then subsequently
fitted to the final parameters. Although the starting data are
generally assumed to possess random error, the output param-
eters of an LS fit are almost always correlated, so the second
step of such an analysis must properly be a correlated fit. By
contrast, the cases reviewed above may involve correlation in
the datas which are no longer “raw” but “partially cooked”
through the subtraction process.

In this paper, I review the procedures for fitting correlated
data and illustrate them specifically for the Guggenheim method,
using Monte Carlo (MC) techniques to confirm the formal
results. A key result of this study is that correlation in the data
stems not from the subtraction process, as widely assumed, but
from multiple use of the original data points in the transformed
data set used in the fitting. As a consequence, if Guggenheim’s
original procedure is followed to the letter, there is no correlation
problem. Also, in most cases of its application, the oft-
disparaged method of combination differences is actually a
statistically sound procedure. In both cases, however, a direct
fitting approach of the original data is normally both easier and
better than fitting the transformed data.

Theoretical Background

Least Squares with Correlation.Methods for the LS fitting
of data to both linear and nonlinear models are available from* E-mail: joel.tellinghuisen@vanderbilt.edu.
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very many sources,15-21 so I review here only enough of the
formalism to establish the necessary notation. I adopt the usual
assumptions of unbiased data with normally distributed error
in the dependent variable (y) only. In the MC computations,
this error is added randomly to points on the exact curve, which
is consistent with the assumption that there exists such a true
curve with random error superimposed.

The goal of an uncorrelated LS fit is the minimization of the
sum of weighted, squared residuals (δi, observed- calculated),

When the fitted quantities are correlated, this expression must
be replaced by

where the weight matrixW contains nonzero off-diagonal
elements. (IfW is diagonal, eq 2 reduced to eq 1, withWii )
wi.) Most nonlinear and all linear problems, both correlated and
uncorrelated, can be solved using the “inverse Hessian” ap-
proach,19 in which the parameter estimatesâ are iteratively
improved using the equations

and

The elements ofX areXij ) (∂Fi/∂âj), evaluated atxi using the
current valuesâ0 of the parameters. The fit functionF expresses
the relations among the variables and parameters; in the common
case wherey can be expressed as an explicit function ofx, it
can be taken as

For linear problems, convergence occurs in one cycle, for any
starting valuesâ0. For nonlinear models, convergence occurs
eventually, provided the starting valuesâ0 are sufficiently near
a minimum in theø2 surface.

The parameter variances are the diagonal elements of the
variance-covariance matrixV, which is proportional toA-1.
The latter is normally computed in solving eq 3 for∆â. If the
error structure of the data is known a priori (as it always is in
an MC calculation in which Gaussian error of knownσ is added
to the true curve), then for an uncorrelated fit,Wii ) wi ) σi

-2

and

This equation remains valid in the general case, where the
weight matrix W is the inverse of the variance-covariance
matrix of the data

As already noted, correlation in the data is manifested as nonzero
off-diagonal elements inVd andW, and it is these that mediate
the correlation in the fit.

For linear fit models, both correlated and uncorrelated, the
parameters are distributed normally, with variances givenexactly
by eq 6. This condition can thus be used to validate an MC
code on a linear model. For nonlinear models, the parameters
are not normally distributed and may not even have finite
variance. However, from computational studies of a number of

common nonlinear fit models,21-24 I have arrived at a 10% “rule
of thumb”: If σâi < |âi| /10, then the Gaussian assumption for
the distribution ofâi should suffice within 10% to specify its
confidence limits. In the context of MC computations on a
nonlinear model, it is useful to define the “exact” nonlinearV
≡ Vnl, which is obtained from eq 6 using exactly fitting data
for the model. The reason for this is that, for nonlinear models,
the structure ofA can depend on the parametersâ and the
dependent variabley as well as onx, and hence, can vary from
data set to data set. By contrast, in linear fitting,A depends
only onx, and thus, is known completely a priori for any data
sety having thisx.

From an experimental standpoint, one can never know the
data error structure exactly. However, with manageable effort,
it is usually possible to characterize the data error well enough
to justify use of eq 6 for the parameter errors, and theø2 test to
check the fit.18,21This knowledge is particularly useful for cases
when the number of degrees of freedomν in the fit is small,
because the relative standard deviation inø2 is (2/ν)1/2, and the
a posteriori (or ignorance)V so widely used

scales withø2. Accordingly, the estimated parameter standard
errors fromVp have a relative uncertainty of (2ν)-1/2. Through
eq 8, one is using the fit itself to estimate the data error. In
unweighted fitting (wi ) 1), the estimated data variance issy

2

) S/ν; in weighted fitting where the relative but not the absolute
errors of the data are known,S/ν is the estimated variance for
data of unit weight. It should be emphasized that if unweighted
fitting is used naively on data that should be treated by weighted
and/or correlated LS, eq 8 is simply wrong in its prediction of
the parameter errors. The extent of its error can only be assessed
through MC computations.

Guggenheim Test Model. Guggenheim’s recommended
procedure does not involve correlation, as already noted, but
the variants used by many workers do. For example, data are
often collected at evenly spaced time intervals, and the data set
is simply displaced along the time axis for subtraction and
subsequent analysis. This model permits the role of correlation
to be illustrated most clearly and is the one I have used here.
Specifically, I have generated and analyzed data using

with b ) a ) k ) 1 and taking values fromt ) 0 to t ) 3 at
intervals∆t ≡ ti+1 - ti ) 0.1. Results are examined as a function
of the time displacement, for constantσy and forσy proportional
to y. (These error models roughly bracket those encountered in
real data.25)

Let z represent the set of differences obtained by subtracting
points separated byl ∆t (i.e., zi ) yi - yi+l ). If there aren y
values, there are thusm ) (n - l )z values to be fitted.z andy
are related by a linear transformation

in which L containsm rows andn columns. The nonzero
elements ofL are Lii ) 1 and Li,i+l ) -1. The variance-
covariance matrixVy of they values is diagonal by assumption,
with elements (i,i) ) σyi

2. Accordingly, the variance-covariance
matrix for thez values is23,26

and for the Guggenheim fit,W ) Vz
-1.

S ) Σ wi δi
2 (1)

S ) δT W δ (2)

XT W X ∆â ≡ A ∆â ) XT W δ (3)

â1 ) â0 + ∆â (4)

Fi ) ycalc(xi) - yi ) -δi (5)

V ) A-1 (6)

W ) Vd
-1 (7)

Vp ) S
ν
A-1 (8)

y ) b + a exp(-kt) (9)

z ) Ly (10)

Vz ) L V y L T (11)
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It is easy to show that the diagonal elements of them × m
matrix Vz are (σyi

2 + σyi+l
2) (i.e., the result from error

propagation for subtraction of two random variates). Moreover,
if l g m, all off-diagonal elements inVz are zero, and there is
no correlation problem. This condition (also stated asl g n/2)
occurs when none of the originaly values is used more than
once, from which it is clear that the correlation arises from such
multiple use of individual data points, not from subtraction. This
makes sense, because the difference of two random variates is
itself a random variate, of exactly predictable variance in the
case of normal variates.23,27

We are now in position to fit them differencesz to an
exponential without a background. However, the whole point
of the Guggenheim method is to render the data in linear form
through a logarithmic transformation. For this purpose, we must
propagate the errors in thezi values into the corresponding errors
in ui ) ln(zi). For uncorrelatedzi, this is trivial: σui ) σzi/zi.
However, when there are nonvanishing off-diagonal elements
in Vz, the logarithmic transformation is more involved. The
correct expression for this is a little-known and little-used
extension28,29 of the only slightly better known expression for
propagation of error in functions of correlated variables23

In eq 12V represents the variance-covariance matrix of a set
of parameters, and the elements ofg are the ordered partial
derivatives of the functionf with respect to these parameters.
The extension yields the variance-covariance matrix of a set
of such functions (e.g., values off at different values of an
independent variable)

Here the “parameters” are them zi values, and the set of
functions are them values ui ) ln(zi). Accordingly, G is
diagonal, with elementszi

-1, and the elements ofVu areVu,ij )
Vz,ij /(zi zj). Again, the diagonal elements are as expected for
uncorrelatedzi values.

Results and Discussion

Calculations were carried out for the constant error model,
usingσy ) 0.01, and for the proportional error model having
σyi ) 0.01× yi. Data were fitted as a function ofl using (1) the
correlated fit models for the exponential and log forms of the
data, (2) models for both forms with proper weighting but
neglect of the correlation (i.e., neglect of off-diagonal elements
in Vz andVu), and (3) unweighted log fits. In the last of these,
statistics were accumulated for both the actual errors ink and
for the apparent errors as returned by the a posterioriVp. In all
cases, the MC calculations employed techniques like those
described before.21-25,30

At the outset, Monte Carlo computations confirmed that the
correlated fit algorithms were working properly (including
giving the same results for both versions, exponential and log-
linear). The chosen error structures make most of the computed
σk values much less than 0.1, so there were no significant
disparities between the “exact”Vnl-based estimates and the MC
statistics. For example, the respective errors forl ) 8 in the
exponential fit of the constant-error model were 0.020738 and
0.020736, well within the Monte Carlo precision for 105 data
sets. For the correlated log fits, the disparities were slightly larger
(e.g., 0.03037 and 0.03062 forl ) 12). The larger difference
in this case is attributed to the nonnormality of the data as a

result of the log transformation.30 This interpretation was
supported by observation of closer agreement whenσyi was
reduced by factors of 10-1000, with the greater reductions
needed for smalll.

For the log fits, there is another problem: Negative differ-
ences can occur for smalll, and there is no proper way to include
data sets with negativezi values in the MC statistics. (They
present no problem for the exponential fits.) To avoid this
problem, the scale of they-error was reduced by a factor of
1000 for the relevant MC computations. Where results are
shown below for the statedσy values of 0.01 or 1% ofy, the
log fit results have actually been obtained by using the reduced
scale σy values and then scaling back up for display. This
procedure uses the property that the parameter standard errors
scale withσyi for a given data error structure. Of course, it also
means that the plotted results for the log fits are hypothetical
for small l.

Figure 1 illustrates results for the constant-error model. As
expected, the correlated models give the most precise estimates
of k at all l, and the correlated and weighted models converge
in their predictions atl ) 16. Note that the first three labeled
quantities in this figure apply to both the exponential and the
log-linear fit models, because with proper attention to weights,
these are identical (apart from the practical limitations already
noted). It is also interesting that the correlated model yields for
l ) 1 a precision identical to that obtained when the full original
data set is fitted directly to eq 9; not surprisingly, the correlated
σk exceeds this value for all otherl. The points marked “wtd-
MC” show that the practitioner who neglects the correlation
but not the weights actually does much better than one might
think (based onVnl) for small l, but somewhat worse in the
midrange ofl that is more likely to be used in an application.
In fact, the actual (MC) statistics show that the weighted model
is not much worse than the correlated model in this range. On
the other hand, the unweighted log-linear treatment yields much
larger actual standard errors and greater disparities between the
actual and the apparent values (fromVp). Thus, in this case,
neglect of weights turns out to be a bigger flaw than neglect of
correlation. The significant disparities between apparent
(V-based) errors and actual (MC) for both the weighted and
the unweighted log-linear treatments serves to accentuate the

σf
2 ) gTVg (12)

Vu ) GT Vz G (13)

Figure 1. Standard error in first-order rate constantk (dimensions
reciprocal time) from various implementations of the Guggenheim
method, for exponential data superimposed upon a background (eq 9,
a ) b ) k ) 1) with constant errorσy ) 0.01. The curve marked
“weighted” shows theVnl-based predictions for analysis by a model
that accounts for the weights but not the correlation, while the “wtd-
MC” points show the actual results of analyzing the data this way.
The results of analysis by unweighted log-linear fits are shown as points
(MC statistics) and the dashed curve (apparent, rms values fromVp in
the MC calculations). The MC calculations behind the last three curves
involved at least 104 data sets per point.
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point that theV matrix is meaningful only when the fit model
matches the actual error structure of the data.

The apparent structure in the correlated fit results and in the
weighted MC results is real, as is shown in Figure 2. This figure
also shows that if one must use the Guggenheim model with
data like those generated for this test model, a good choice for
l is the lowest value that avoids the correlation problem (16 in
this case) and which incidentally agrees with Guggenheim’s
description of his procedure. The standard error ink at this point
is only 8% greater than the minimum value, but one must still
take weights into account in a log-linear fit to realize this
precision. (The weights are constant for the exponential fit in
the constant-error model, becauseσz

2 ) 2 σy
2.)

Repetition of the computations behind Figure 1 for the
proportional error model yields the results illustrated in Figure
3. These are qualitatively similar to those in Figure 1, but with
somewhat smaller relative increase inσk for the unweighted
log fits. Note that for an exponential without background, the
unweighted log-linear fit is statistically correct for the propor-
tional error model in the absence of correlation (becauseσu )
σy/y). However, this simple relation is lost when differences
are taken, so nonconstant weights are needed in the log-linear
fits for both error models.

The biases revealed in the MC computations were sometimes
statistically significant for the very large ensembles of data sets
processed (g 104) but were never significant from a practical
standpoint. Thus, the main effects of neglect of weights and
correlation in the Guggenheim method remain the loss of
efficiency and the reporting of incorrect (Vp- or Vnl-based)
parameter standard errors.

Conclusion

The Guggenheim and other difference methods can yield data
that are correlated, requiring correlated least squares for proper
analysis. A formal analysis of such difference methods shows
that the correlation is not a result of the subtraction but of the
multiple use of the original (random) data in computing the
differences. The difference between two random variates
remains a random variate, with variance exactly equal to the
sum of the variances of the two quantities involved in the
subtraction, when the data are normal. However, the sign of
the random deviation becomes important when the same variate
is added to generate one difference point and subtracted to
generate another. A correlated treatment of such data yields
formal agreement between the predictions of the variance-
covariance matrix for the fit model and the results of Monte
Carlo computations on data generated to be consistent with the
model. The proper accounting for correlation in this situation
always leads to a reduction in the parameter errors. However,
from a practical standpoint, neglect of weights is a bigger source
of imprecision than neglect of correlation in typical applications
of the Guggenheim method.

In spectroscopy, application of the method of combination
differences to spectra containing only R and P branches does
not use individual lines more than once; thus, the procedure is
statistically sound and does not require correlated fitting. In fact,
preliminary calculations show that the estimates of rotational
and centrifugal distortional constants can be obtained with nearly
identical precisions in combination difference analyses and
whole-band fits.31 However, if Q lines are present also and if
certain fine splittings are neglected, it is possible to generate
three different combination differences for a given (υ,J) level,
and these are mutually correlated. Neglect of this correlation is
responsible for the reported discrepancies betweenV-based and
MC estimates of standard errors in one published study.32

Neglect of correlation is an even greater problem in the method
of “successive differences,” in which adjacent lines are sub-
tracted to remove the band origin from the fit model.5,6 The
flaws in such methods have been characterized in detail
elsewhere.31

Finally, it is worth emphasizing that the point of the present
study has been the clarification of the role of correlation in
difference fitting methods, not the selling of such methods. The
direct fitting of the raw data to the correct linear or nonlinear
relation, with weights as appropriate, is so straightforward
nowadays that in few situations will such difference methods
be found advantageous for quantitative analysis. The assumption
of random error in the raw data is reasonable in most cases
(with the notable exception of the example of isothermal titration
calorimetry7), making correlation a nonproblem in the direct
fitting approaches.

Note Added after ASAP Posting.This article was released
ASAP on 9/6/2003 with an incorrect volume number in
reference 7. The correct version was posted on 9/12/2003.
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